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+ 
EDGHGIIIEEECFHIGIIIGI 
@HEAD3 
CCATACTTCTAGCAATTC 
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Motivation: Indices used in “ultra-fast” mapping approaches are 
typically very memory hungry.  This is OK for transcriptome mapping, 
but not scalable to genomic, metagenomic, pangenomic or population 
mapping.

Goal: Develop an index with practical memory requirements 
that maintains the desirable performance (i.e. query) 
characteristics of the “ultra-fast” indices.

Compacted colored de Bruijn graph 
(ccdBG)

Built over 1 or more genomes / sequence 
collections

Index makes use of minimum perfect hashing 
succinct bit vector representations and (optionally)  

a new sampling scheme

Scaling up fast reference-based indices



Pufferfish: An efficient index for the ccdBG

Appeared at ISMB 2018

•The past decade has largely been dominated by SA/BWT/FM-index-
based approaches to reference sequence indexing (e.g. Bowtie, 
BWA, BWA-MEM, Bowtie2, STAR, etc.)

•There has been a renaissance of sorts for hash-based indexing 
(deBGA, Brownie, kallisto, mashmap, minimap & minimap2, etc.)

•Pufferfish goes the hashing-based route; with a twist.

https://github.com/COMBINE-lab/pufferfish

•Not considering generalized path indices on general seq (e.g. GCSA2 
(VG), HISAT2). Interesting, but a different problem.

https://github.com/COMBINE-lab/pufferfish


TCA CAT ATT TTG

TGG GGT GTA TAA

AAC ACC CCG

TGC GCG CGA GAA

TCATTG

TGGTAA

TGCGAA

AACCG

Recall the “colored” de Bruijn Graph
Nodes are k-mers (here k=3)

Example from : https://algolab.files.wordpress.com/2016/10/chikhi-milan-18nov.pdf

Edges exist between nodes that overlap by k-1 (in the input)*

There are multiple related (but distinct) definitions of the dBG in practice.  We adopt the edge-explicit version.

compacted colored de Bruijn graph

Colors encode “origin” of k-mers (e.g., references where they exist)



The compacted colored dBG as a sequence index

•Key idea: represent a collection of sequences using the colored de 
Bruijn graph (dBG) (Iqbal ’12).

•Each color is an input reference (e.g. genome or transcript).

•Use the compacted colored dBG as an index for reference-based 
sequence search.

•Redundant sequences (repeats) are implicitly collapsed.  Why is this 
potentially much better than a naive hash?



The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed.  Why is this 
potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1

R1-l1+1, R2 - l1+1, …, RM - l1+1

R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0

1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection



The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed.  Why is this 
potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1

R1-l1+1, R2 - l1+1, …, RM - l1+1

R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0

1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

Still, the biggest problem for these schemes, in practice, is memory usage Still, the biggest problem for these schemes, in practice, is memory usage 

The main culprit is the hash table itself 



https://github.com/rizkg/BBHash

Use BBHash :)

Recall: Minimum Perfect Hashing
Minimum Perfect Hash Function (MPHF)

𝒦 ⊆ 𝒰, f : 𝒦 → ℕ+

if x ∈ 𝒦 then f(x) ∈ [1, 𝒦 ]

if x ∈ 𝒰∖𝒦 then f(x) ∈ [1, 𝒰 ] (Like “false positives”)

Best methods achieve ~2.1 bits/key regardless of key size

f is a complete, injective function from 𝒦 → [1, 𝒦 ]

https://github.com/rizkg/BBHash


The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of  
ccdBG

(optional)



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Maps each valid k-mer to some number in 
[0,N)



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

At index h(x), this table contains the position, 
in the list of unitigs, of this k-mer



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

• useq contains the uniting sequences 
concatenated together 

• bv is a boundary vector that records a 1 at 
the end of each uniting, and a 0 elsewhere 



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Records, for each uniting, the list of 
references, positions and orientations in 

which it occurs



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of  
ccdBG

(optional)



Who’s the culprit?



Who’s the culprit?



The sparse Pufferfish index
In large indices, the position table dominates index size

ATC

k-mer with  
sampled position

nucleotides to add to     to get 

Intuition: Successors and predecessors in unipaths are globally unique, 
instead of storing position information for all k-mers, store positions only 
at sampled “landmarks” and say how to navigate to these landmarks 
(similar to bi-directional sampling in the FM-index).



The sparse Pufferfish index (in detail)



What sampling factor is right?
Tradeoff : Sparser sampling → less space but slower lookup
Fastest : Sampling factor s > 2·e+1 (Still a range of sizes)
Smallest : Extension size = 1, sampling = s



Space of index + query in RAM

#Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv:1303.3997.

^Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527.

Index space & K-mer query time



Index space & K-mer query time

Time to look up all fixed-length substrings in an experiment

747,842,900 7,508,576,020 509,143,360# queries:



Pufferfish summary (part 1)

•The dense pufferfish index strikes a good balance 
between index space and raw query speed.

•At a constant factor (though not asymptotic) cost, index 
size is tunable with our sampling scheme.

•To keep memory usage reasonable, we have to be quite 
careful about our hashing-based schemes.

•At least for fixed-length patterns, a good hashing 
approach can be much faster than (still asymptotically-
optimal) full-text indexes.



An example application of Pufferfish
•Taxonomic read classification — for each read, assign it 
to the taxon (strain, species, genus) from which we think 
it derived. Related to, but distinct from, taxonomic 
abundance estimation.

Figures adapted from: Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.



Pufferfish taxonomic assignment
We adopt what is essentially the algorithm of Kraken*, but 
replace k-mer counting with lightweight mapping.

This enforces positional & orientation consistency of matches

*Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.

•Score all root-to-leaf 
(RTL) paths

•Assign read to leaf of 
highest-scoring path

•In case of tie, assign 
read to LCA of all 
highest-scoring paths.



“Whole taxonomy” accuracy assessment



“Whole taxonomy” accuracy assessment

Total reads  
in this subtree



“Whole taxonomy” accuracy assessment

Total reads  
in this subtree Reads  

assigned at  
this node



Pufferfish taxonomic assignment

Simulated data from : McIntyre, et al. (2017). 
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1).

Higher 
is  

better

Lower 
is  

better 
(distance)

Simulations:
(LC1-8, HC1, HC2)
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Doing even better for the sequence table
Pufferfish was introduced in 2017 and published in 2018.  The field has come a long way since then; particularly in  
terms of better representations of the sequence part of the index.

Can view pufferfish index as 2 (mostly separable) components:

(optional)

Sequence index

“Tiling index”



Doing even better for the sequence table

More recent improvements to the sequence index component:

Sparse and Skew Hashing of K-Mers represents the current state-of-the-art and builds on both pufferfish and BLight.

Both pufferfish and BLight take advantage of the idea of minimizers.



SSHash

Following slides adapted from a presentation created by Jason Fan
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analysis. 
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Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence 
analysis. 

2. Goal is to support fast queries and space efficient representations of: (k-mer, value) 
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data 
structures.

In this paper, given  a k-mer set  of size . We want data structure that supports:S n
1. Lookup( ) that uniquely maps any  to an integer g g ∈ S 0 ≤ i < n
2. Access ( ) that returns a k-mer  s.t Lookup( ) = .i g g i

Note: Access ( ) is really only easy in this paper since values are indices.i
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Key idea: “streaming” queries

Many applications care about querying adjacent k-mers on a string. 
Where consecutive k-mers on a string are queried.

Some data-structures are optimized to handle this. One example is 
pufferfish… 
…which implements a cache that exploits the fact that consecutive k-
mers likely land in the same contig (in the same set of references).

Minimizers can also be exploited 



Minimizers: Sparsifying k-mers

ACTGACCCGTAGC

ACTGACCCGTAGC

The minimizer of a k-mer is the smallest length m sub-sequence of the k-mer under some ordering σ

k-mer X (k=13)

minimizer of x (for m=3, σ = alphabetical ordering)

This can be useful for partitioning / grouping k-mers 

ACTGACCCGTAGCGCTAGATAAC

ACTGACCCGTAGCGCTAGATAAC

ACTGACCCGTAGCGCTAGATAAC

All k-mers in this window of length 19 share the same minimizer; they are called a super k-mer

A super k-mer can have length between k and 2k-m; provides a way to group k-mers looking 
only at it’s actual sequence!



SSHash

SSHash is much like pufferfish but with a few important optimizations:  
1. Instead of sampling positions with a constant stride length… sample 

based on minimizers and store the positions of all super k-mers 
containing these minimizers. 

2. At query time, given a k-mer . Find its minimizer , lookup all 
occurrences of , and return the  Lookup( ) as appropriate

g r
r g
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So how to sample based on minimizers?

Super k-mers := the maximal set of consecutive k-mers on a reference 
sequence that share the same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

This yields a “bucketed” partitioning of the reference where a bucket 
contains all the super k-mers on the reference with minimizer .

Br
r

The intuition is that  is usually small, and that you can exhaustively 
search for matches to a query k-mer with minimizer  in .

Br
r Br
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So how to sample based on minimizers?

Given  strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs
2. endpoints, such that  useq[ endpoints[i] ] is the last base of a unitig in useq.

3. : a MPHF over the set of minimizers of length m on S.f

4. sizes, such that sizes[i + 1] – sizes[i] =  when = i.Br f(r)

5. offsets, such that for a minimizer , with sizes[  ] = begin, offsets[begin, 

begin +  ] contain the absolute positions of each super k-mer with 
minimizer  on useq.

𝑟 f(r)
Br
𝑟



SSHash



SSHash

SSHash is just like pufferfish.  
1. Instead of sampling positions with a constant stride length… sample 

based on minimizers and store the positions of super-kmers 
containing these minimizers 

2. At query time, given a k-mer . Find its minimizer , lookup all 
occurrences of , and return the  Lookup( ) as appropriate

g r
r g



SShash (without the skew) visually

useq

endpoints

0, 43, 127 12, 67, 90 21, 53, 78, 114, 189offsets

sizes 0 3 6 11

f

query(g) minimizer(g) = r

f(r) = 1
sizes[f(r)] = sizes[1] = 3
sizes[f(r)+1] = sizes[2] = 6
|Br| = 6-3 = 3

Scan super k-mers starting at positions 12,  67, 90

r found at pos 97 
from endpoints we can get the contig and offset 
within this contig corresponding to global pos 97 

endpoints compressed with Elias-Fano encoding
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Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin  sizes[ ], end  sizes[  + 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[ begin] ] has minimizer r
4. For each  in offsets[ begin, end ) “scan the super-kmer at position t on useq”.t

a. Let  be smallest entry in endpoints greater than .tend t
b. Let l = min(2k − m, tend − t)
c. Scan string useq[ ,  ] for exact match with .t t + l 𝑔
d. If a match is found at position  on useq[ ,  ], return w t t + l w + t − j(k − 1)

a. Where  is the number of unitigs encoded on useq before position . j t
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A note on super k-mer lengths
Super k-mers := the maximal set of consecutive k-mers on a reference sequence that share the 
same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

Super k-mers have length “at most 2k – m”... 

But not really, since you can have:
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC

The simple solution taken by SSHash is to simply truncate super-kmers of length greater 
than  2k-m into 2k-m blocks.
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Skew hashing -- Bounding bucket sizes.

There are very few buckets that contain many super k-mers. But the size of these 
buckets may be large.

e.g. largest bucket in human genome is ~36,000 super-kmers.

Note that though these buckets are “large” they are still small compared to the 
reference.

So not too many k-mers belong to these buckets.

Key idea: build a MPHFs over such k-mers directly to quickly associate them to 
the appropriate super k-mer, and its position in useq.
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Skew hashing
Given parameters , partition the buckets into  sets.ℓ, L L
Let  be the set of k-mers belonging to any bucket  with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

For each , build an MPHF .Si fi
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Skew hashing
Given parameters , partition the buckets into  sets.ℓ, L L
Let  be the set of k-mers belonging to any bucket  with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

For each , build an MPHF .Si fi
And store compact vectors , such that , indicates that  occurs in the -th 
super-kmer in some bucket 

Pi Pi[ fi(g)] = q g q
Br

NB: the sizing ensures optimal compacted . Empirically, the compact vectors and MPHF 
are <1% of the SSHash size, and represent <2% of total k-mers

Pi



Skew hashing
Given parameters , partition the buckets into  sets. 
Let  be the set of k-mers belonging to any bucket  with: 

 for  

 for  

For set  we need  bits to write down an offset into a bucket of size 

. Because of the skew distribution, we generally expect 

.  So this skew hashing setup uses fewer bits for 
buckets that require fewer bits.

ℓ, L L
Si Br

2i < Br < 2i+1 ℓ < i < L

2L < Br i = L

Si ⌈log2(Si)⌉
Si

Bℓ < Bℓ+1 + … + BL



Querying with the “skew index”

Let begin  sizes[ ], end  sizes[  + 1] 

And let  

If , then do the usual query. 

Otherwise, let ,  

and look at the super-kmer at offsets[ begin + q] on useq

= f(r) = f(r)
i = log(end − begin) − ℓ

i < 0
q = Pi[ fi(g)]



How to handle buckets with large |Br|

1. Let A be the k-mers in buckets with size >  
2. Build an MPHF, h(.) over A 
3. Store a vector P, with length |A| 
4. At query time, for a queried k-mer g 
5. P[h( g )] = q, says that g occurs on the q-th super-k-mer for the 

bucket that g belongs to.

2ℓ



Streaming Queries

Arguably the most critical optimization for “streamed” queries. 
AAGCAACTGGT 
AAGCAACTGGT 
AAGCAACTGGT 

Implement the caching scheme where, we simply save: 
1. The position of the last hit 
2. The offsets for  given that the last query had minimizer, . Br r



A note on double-strandedness

In the “regular” flavor of SSHash described so far… to handle double-
strandedness, we query for both  and its reverse complement. 

Or… in a canonical SSHash, a minimizer for  is defined as the min of the 
minimizers for  and . 

How this is implemented and how this affects the implementation and 
properties of super k-mers is not really discussed in the paper.

g

g
g ḡ



Experiments – the data

*paths are unipaths from SPSS decomposition. But this doesn’t matter too much for our purposes…





It’s worth noting here that pufferfish stores information that supports queries that are more than just 
lookup( ). And can do more than just an MPHF…𝑔







Some observations about SSHash

1. Skew-hashing approach for building small exact data structures for the tail of a distribution is 
interesting. 

2. The streaming workload significantly favors SSHash. 
• Other optimizations in this vein seem interesting. 

3. SShash is a state-of-the-art associative container for k-mers, but is only the “sequence” part of 
the index.  For a full reference index, you still need to pair it with an appropriate unitig -> 
reference mapping (more to come).


