
Indexing the
(compacted) colored de

Bruĳn graph

1 1 1 1 1 1

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCCATGAGGCTGTCCTGGTGCAGTATGTGGACACGCT

MPHF

x = CTTCC

Position
Vector

h(x)

ph(x)

…

Colored de-Bruijn Graph

rank(ph(k)) = 3

Unipath Occurence Table

…

…

{refr, p3r, o3r}, {refg, p3g, o3g}

{refy, p2y, o2y}, {refr, p2r, o2r}

…

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Motivation: Indices used in “ultra-fast” mapping approaches are
typically very memory hungry. This is OK for transcriptome mapping,
but not scalable to genomic, metagenomic, pangenomic or population
mapping.

Goal: Develop an index with practical memory requirements
that maintains the desirable performance (i.e. query)
characteristics of the “ultra-fast” indices.

Compacted colored de Bruijn graph
(ccdBG)

Built over 1 or more genomes / sequence
collections

Index makes use of minimum perfect hashing
succinct bit vector representations and (optionally)

a new sampling scheme

Scaling up fast reference-based indices

Pufferfish: An efficient index for the ccdBG

Appeared at ISMB 2018

•The past decade has largely been dominated by SA/BWT/FM-index-
based approaches to reference sequence indexing (e.g. Bowtie,
BWA, BWA-MEM, Bowtie2, STAR, etc.)

•There has been a renaissance of sorts for hash-based indexing
(deBGA, Brownie, kallisto, mashmap, minimap & minimap2, etc.)

•Pufferfish goes the hashing-based route; with a twist.

https://github.com/COMBINE-lab/pufferfish

•Not considering generalized path indices on general seq (e.g. GCSA2
(VG), HISAT2). Interesting, but a different problem.

https://github.com/COMBINE-lab/pufferfish

TCA CAT ATT TTG

TGG GGT GTA TAA

AAC ACC CCG

TGC GCG CGA GAA

TCATTG

TGGTAA

TGCGAA

AACCG

Recall the “colored” de Bruijn Graph
Nodes are k-mers (here k=3)

Example from : https://algolab.files.wordpress.com/2016/10/chikhi-milan-18nov.pdf

Edges exist between nodes that overlap by k-1 (in the input)*

There are multiple related (but distinct) definitions of the dBG in practice. We adopt the edge-explicit version.

compacted colored de Bruijn graph

Colors encode “origin” of k-mers (e.g., references where they exist)

The compacted colored dBG as a sequence index

•Key idea: represent a collection of sequences using the colored de
Bruijn graph (dBG) (Iqbal ’12).

•Each color is an input reference (e.g. genome or transcript).

•Use the compacted colored dBG as an index for reference-based
sequence search.

•Redundant sequences (repeats) are implicitly collapsed. Why is this
potentially much better than a naive hash?

The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed. Why is this
potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1

R1-l1+1, R2 - l1+1, …, RM - l1+1

R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0

1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed. Why is this
potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1

R1-l1+1, R2 - l1+1, …, RM - l1+1

R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0

1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

Still, the biggest problem for these schemes, in practice, is memory usage Still, the biggest problem for these schemes, in practice, is memory usage

The main culprit is the hash table itself

https://github.com/rizkg/BBHash

Use BBHash :)

Recall: Minimum Perfect Hashing
Minimum Perfect Hash Function (MPHF)

𝒦 ⊆ 𝒰, f : 𝒦 → ℕ+

if x ∈ 𝒦 then f(x) ∈ [1, 𝒦]

if x ∈ 𝒰∖𝒦 then f(x) ∈ [1, 𝒰] (Like “false positives”)

Best methods achieve ~2.1 bits/key regardless of key size

f is a complete, injective function from 𝒦 → [1, 𝒦]

https://github.com/rizkg/BBHash

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of
ccdBG

(optional)

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Maps each valid k-mer to some number in
[0,N)

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

At index h(x), this table contains the position,
in the list of unitigs, of this k-mer

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

• useq contains the uniting sequences
concatenated together

• bv is a boundary vector that records a 1 at
the end of each uniting, and a 0 elsewhere

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Records, for each uniting, the list of
references, positions and orientations in

which it occurs

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of
ccdBG

(optional)

Who’s the culprit?

Who’s the culprit?

The sparse Pufferfish index
In large indices, the position table dominates index size

ATC

k-mer with
sampled position

nucleotides to add to to get

Intuition: Successors and predecessors in unipaths are globally unique,
instead of storing position information for all k-mers, store positions only
at sampled “landmarks” and say how to navigate to these landmarks
(similar to bi-directional sampling in the FM-index).

The sparse Pufferfish index (in detail)

What sampling factor is right?
Tradeoff : Sparser sampling → less space but slower lookup
Fastest : Sampling factor s > 2·e+1 (Still a range of sizes)
Smallest : Extension size = 1, sampling = s

Space of index + query in RAM

#Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv:1303.3997.

^Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527.

Index space & K-mer query time

Index space & K-mer query time

Time to look up all fixed-length substrings in an experiment

747,842,900 7,508,576,020 509,143,360# queries:

Pufferfish summary (part 1)

•The dense pufferfish index strikes a good balance
between index space and raw query speed.

•At a constant factor (though not asymptotic) cost, index
size is tunable with our sampling scheme.

•To keep memory usage reasonable, we have to be quite
careful about our hashing-based schemes.

•At least for fixed-length patterns, a good hashing
approach can be much faster than (still asymptotically-
optimal) full-text indexes.

An example application of Pufferfish
•Taxonomic read classification — for each read, assign it
to the taxon (strain, species, genus) from which we think
it derived. Related to, but distinct from, taxonomic
abundance estimation.

Figures adapted from: Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.

Pufferfish taxonomic assignment
We adopt what is essentially the algorithm of Kraken*, but
replace k-mer counting with lightweight mapping.

This enforces positional & orientation consistency of matches

*Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.

•Score all root-to-leaf
(RTL) paths

•Assign read to leaf of
highest-scoring path

•In case of tie, assign
read to LCA of all
highest-scoring paths.

“Whole taxonomy” accuracy assessment

“Whole taxonomy” accuracy assessment

Total reads
in this subtree

“Whole taxonomy” accuracy assessment

Total reads
in this subtree Reads

assigned at
this node

Pufferfish taxonomic assignment

Simulated data from : McIntyre, et al. (2017).
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1).

Higher
is

better

Lower
is

better
(distance)

Simulations:
(LC1-8, HC1, HC2)

M
AR

D

F1
-s

co
re

Sp
ea

rm
an

Doing even better for the sequence table
Pufferfish was introduced in 2017 and published in 2018. The field has come a long way since then; particularly in  
terms of better representations of the sequence part of the index.

Can view pufferfish index as 2 (mostly separable) components:

(optional)

Sequence index

“Tiling index”

Doing even better for the sequence table

More recent improvements to the sequence index component:

Sparse and Skew Hashing of K-Mers represents the current state-of-the-art and builds on both pufferfish and BLight.

Both pufferfish and BLight take advantage of the idea of minimizers.

SSHash

Following slides adapted from a presentation created by Jason Fan

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data
structures.

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data
structures.

In this paper, given a k-mer set of size . We want data structure that supports:S n

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data
structures.

In this paper, given a k-mer set of size . We want data structure that supports:S n
1. Lookup() that uniquely maps any to an integer g g ∈ S 0 ≤ i < n

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data
structures.

In this paper, given a k-mer set of size . We want data structure that supports:S n
1. Lookup() that uniquely maps any to an integer g g ∈ S 0 ≤ i < n
2. Access () that returns a k-mer s.t Lookup() = .i g g i

Motivation

1. Associative data-structures, or dictionaries, that map k-mers key to sequence
analysis.

2. Goal is to support fast queries and space efficient representations of: (k-mer, value)
pairs in the general case.

3. Many groups have been thinking about efficient ways to build and store these data
structures.

In this paper, given a k-mer set of size . We want data structure that supports:S n
1. Lookup() that uniquely maps any to an integer g g ∈ S 0 ≤ i < n
2. Access () that returns a k-mer s.t Lookup() = .i g g i

Note: Access () is really only easy in this paper since values are indices.i

Key idea: “streaming” queries

Many applications care about querying adjacent k-mers on a string.
Where consecutive k-mers on a string are queried.

Key idea: “streaming” queries

Many applications care about querying adjacent k-mers on a string.
Where consecutive k-mers on a string are queried.

Some data-structures are optimized to handle this. One example is
pufferfish…

Key idea: “streaming” queries

Many applications care about querying adjacent k-mers on a string.
Where consecutive k-mers on a string are queried.

Some data-structures are optimized to handle this. One example is
pufferfish…
…which implements a cache that exploits the fact that consecutive k-
mers likely land in the same contig (in the same set of references).

Key idea: “streaming” queries

Many applications care about querying adjacent k-mers on a string.
Where consecutive k-mers on a string are queried.

Some data-structures are optimized to handle this. One example is
pufferfish…
…which implements a cache that exploits the fact that consecutive k-
mers likely land in the same contig (in the same set of references).

Minimizers can also be exploited

Minimizers: Sparsifying k-mers

ACTGACCCGTAGC

ACTGACCCGTAGC

The minimizer of a k-mer is the smallest length m sub-sequence of the k-mer under some ordering σ

k-mer X (k=13)

minimizer of x (for m=3, σ = alphabetical ordering)

This can be useful for partitioning / grouping k-mers

ACTGACCCGTAGCGCTAGATAAC

ACTGACCCGTAGCGCTAGATAAC

ACTGACCCGTAGCGCTAGATAAC

All k-mers in this window of length 19 share the same minimizer; they are called a super k-mer

A super k-mer can have length between k and 2k-m; provides a way to group k-mers looking
only at it’s actual sequence!

SSHash

SSHash is much like pufferfish but with a few important optimizations:
1. Instead of sampling positions with a constant stride length… sample

based on minimizers and store the positions of all super k-mers
containing these minimizers.

2. At query time, given a k-mer . Find its minimizer , lookup all
occurrences of , and return the Lookup() as appropriate

g r
r g

So how to sample based on minimizers?

Super k-mers := the maximal set of consecutive k-mers on a reference
sequence that share the same minimizer (sequence).

So how to sample based on minimizers?

Super k-mers := the maximal set of consecutive k-mers on a reference
sequence that share the same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

So how to sample based on minimizers?

Super k-mers := the maximal set of consecutive k-mers on a reference
sequence that share the same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

This yields a “bucketed” partitioning of the reference where a bucket
contains all the super k-mers on the reference with minimizer .

Br
r

So how to sample based on minimizers?

Super k-mers := the maximal set of consecutive k-mers on a reference
sequence that share the same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

This yields a “bucketed” partitioning of the reference where a bucket
contains all the super k-mers on the reference with minimizer .

Br
r

The intuition is that is usually small, and that you can exhaustively
search for matches to a query k-mer with minimizer in .

Br
r Br

So how to sample based on minimizers?

Given strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs

So how to sample based on minimizers?

Given strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs
2. endpoints, such that useq[endpoints[i]] is the last base of a unitig in useq.

So how to sample based on minimizers?

Given strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs
2. endpoints, such that useq[endpoints[i]] is the last base of a unitig in useq.

3. : a MPHF over the set of minimizers of length m on S.f

So how to sample based on minimizers?

Given strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs
2. endpoints, such that useq[endpoints[i]] is the last base of a unitig in useq.

3. : a MPHF over the set of minimizers of length m on S.f

4. sizes, such that sizes[i + 1] – sizes[i] = when = i.Br f(r)

So how to sample based on minimizers?

Given strings (unitigs), , with total length p S N
1. useq := the sequence of unitigs
2. endpoints, such that useq[endpoints[i]] is the last base of a unitig in useq.

3. : a MPHF over the set of minimizers of length m on S.f

4. sizes, such that sizes[i + 1] – sizes[i] = when = i.Br f(r)

5. offsets, such that for a minimizer , with sizes[] = begin, offsets[begin,

begin +] contain the absolute positions of each super k-mer with
minimizer on useq.

𝑟 f(r)
Br
𝑟

SSHash

SSHash

SSHash is just like pufferfish.
1. Instead of sampling positions with a constant stride length… sample

based on minimizers and store the positions of super-kmers
containing these minimizers

2. At query time, given a k-mer . Find its minimizer , lookup all
occurrences of , and return the Lookup() as appropriate

g r
r g

SShash (without the skew) visually

useq

endpoints

0, 43, 127 12, 67, 90 21, 53, 78, 114, 189offsets

sizes 0 3 6 11

f

query(g) minimizer(g) = r

f(r) = 1
sizes[f(r)] = sizes[1] = 3
sizes[f(r)+1] = sizes[2] = 6
|Br| = 6-3 = 3

Scan super k-mers starting at positions 12, 67, 90

r found at pos 97 
from endpoints we can get the contig and offset 
within this contig corresponding to global pos 97

endpoints compressed with Elias-Fano encoding

Query

Given a k-mer :g

1. r = minimizerm(g)

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r
4. For each in offsets[begin, end) “scan the super-kmer at position t on useq”.t

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r
4. For each in offsets[begin, end) “scan the super-kmer at position t on useq”.t

a. Let be smallest entry in endpoints greater than .tend t
b. Let l = min(2k − m, tend − t)

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r
4. For each in offsets[begin, end) “scan the super-kmer at position t on useq”.t

a. Let be smallest entry in endpoints greater than .tend t
b. Let l = min(2k − m, tend − t)
c. Scan string useq[,] for exact match with .t t + l 𝑔

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r
4. For each in offsets[begin, end) “scan the super-kmer at position t on useq”.t

a. Let be smallest entry in endpoints greater than .tend t
b. Let l = min(2k − m, tend − t)
c. Scan string useq[,] for exact match with .t t + l 𝑔
d. If a match is found at position on useq[,], return w t t + l w + t − j(k − 1)

Query

Given a k-mer :g

1. r = minimizerm(g)
2. begin sizes[], end sizes[+ 1]= f(r) = f(r)
3. Check that k-mer at useq[offsets[begin]] has minimizer r
4. For each in offsets[begin, end) “scan the super-kmer at position t on useq”.t

a. Let be smallest entry in endpoints greater than .tend t
b. Let l = min(2k − m, tend − t)
c. Scan string useq[,] for exact match with .t t + l 𝑔
d. If a match is found at position on useq[,], return w t t + l w + t − j(k − 1)

a. Where is the number of unitigs encoded on useq before position . j t

A note on super k-mer lengths
Super k-mers := the maximal set of consecutive k-mers on a reference sequence that share the
same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

A note on super k-mer lengths
Super k-mers := the maximal set of consecutive k-mers on a reference sequence that share the
same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

Super k-mers have length “at most 2k – m”...

A note on super k-mer lengths
Super k-mers := the maximal set of consecutive k-mers on a reference sequence that share the
same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

Super k-mers have length “at most 2k – m”...

But not really, since you can have:
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC

A note on super k-mer lengths
Super k-mers := the maximal set of consecutive k-mers on a reference sequence that share the
same minimizer (sequence).
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

Super k-mers have length “at most 2k – m”...

But not really, since you can have:
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC
AAGCAACTGAAC

The simple solution taken by SSHash is to simply truncate super-kmers of length greater
than 2k-m into 2k-m blocks.

Skew hashing -- Bounding bucket sizes.

There are very few buckets that contain many super k-mers. But the size of these
buckets may be large.

e.g. largest bucket in human genome is ~36,000 super-kmers.

Skew hashing -- Bounding bucket sizes.

There are very few buckets that contain many super k-mers. But the size of these
buckets may be large.

e.g. largest bucket in human genome is ~36,000 super-kmers.

Note that though these buckets are “large” they are still small compared to the
reference.

Skew hashing -- Bounding bucket sizes.

There are very few buckets that contain many super k-mers. But the size of these
buckets may be large.

e.g. largest bucket in human genome is ~36,000 super-kmers.

Note that though these buckets are “large” they are still small compared to the
reference.

So not too many k-mers belong to these buckets.

Skew hashing -- Bounding bucket sizes.

There are very few buckets that contain many super k-mers. But the size of these
buckets may be large.

e.g. largest bucket in human genome is ~36,000 super-kmers.

Note that though these buckets are “large” they are still small compared to the
reference.

So not too many k-mers belong to these buckets.

Key idea: build a MPHFs over such k-mers directly to quickly associate them to
the appropriate super k-mer, and its position in useq.

Skew hashing
Given parameters , partition the buckets into sets.ℓ, L L
Let be the set of k-mers belonging to any bucket with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

Skew hashing
Given parameters , partition the buckets into sets.ℓ, L L
Let be the set of k-mers belonging to any bucket with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

Skew hashing
Given parameters , partition the buckets into sets.ℓ, L L
Let be the set of k-mers belonging to any bucket with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

For each , build an MPHF .Si fi
And store compact vectors , such that , indicates that occurs in the -th
super-kmer in some bucket

Pi Pi[fi(g)] = q g q
Br

Skew hashing
Given parameters , partition the buckets into sets.ℓ, L L
Let be the set of k-mers belonging to any bucket with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

For each , build an MPHF .Si fi
And store compact vectors , such that , indicates that occurs in the -th
super-kmer in some bucket

Pi Pi[fi(g)] = q g q
Br

Skew hashing
Given parameters , partition the buckets into sets.ℓ, L L
Let be the set of k-mers belonging to any bucket with:Si Br

 for 2i < Br < 2i+1 ℓ < i < L

 for 2L < Br i = L

For each , build an MPHF .Si fi
And store compact vectors , such that , indicates that occurs in the -th
super-kmer in some bucket

Pi Pi[fi(g)] = q g q
Br

NB: the sizing ensures optimal compacted . Empirically, the compact vectors and MPHF
are <1% of the SSHash size, and represent <2% of total k-mers

Pi

Skew hashing
Given parameters , partition the buckets into sets.
Let be the set of k-mers belonging to any bucket with:

 for

 for

For set we need bits to write down an offset into a bucket of size

. Because of the skew distribution, we generally expect

. So this skew hashing setup uses fewer bits for
buckets that require fewer bits.

ℓ, L L
Si Br

2i < Br < 2i+1 ℓ < i < L

2L < Br i = L

Si ⌈log2(Si)⌉
Si

Bℓ < Bℓ+1 + … + BL

Querying with the “skew index”

Let begin sizes[], end sizes[+ 1]

And let

If , then do the usual query.

Otherwise, let ,

and look at the super-kmer at offsets[begin + q] on useq

= f(r) = f(r)
i = log(end − begin) − ℓ

i < 0
q = Pi[fi(g)]

How to handle buckets with large |Br|

1. Let A be the k-mers in buckets with size >
2. Build an MPHF, h(.) over A
3. Store a vector P, with length |A|
4. At query time, for a queried k-mer g
5. P[h(g)] = q, says that g occurs on the q-th super-k-mer for the

bucket that g belongs to.

2ℓ

Streaming Queries

Arguably the most critical optimization for “streamed” queries.
AAGCAACTGGT
AAGCAACTGGT
AAGCAACTGGT

Implement the caching scheme where, we simply save:
1. The position of the last hit
2. The offsets for given that the last query had minimizer, . Br r

A note on double-strandedness

In the “regular” flavor of SSHash described so far… to handle double-
strandedness, we query for both and its reverse complement.

Or… in a canonical SSHash, a minimizer for is defined as the min of the
minimizers for and .

How this is implemented and how this affects the implementation and
properties of super k-mers is not really discussed in the paper.

g

g
g ḡ

Experiments – the data

*paths are unipaths from SPSS decomposition. But this doesn’t matter too much for our purposes…

It’s worth noting here that pufferfish stores information that supports queries that are more than just
lookup(). And can do more than just an MPHF…𝑔

Some observations about SSHash

1. Skew-hashing approach for building small exact data structures for the tail of a distribution is
interesting.

2. The streaming workload significantly favors SSHash.
• Other optimizations in this vein seem interesting.

3. SShash is a state-of-the-art associative container for k-mers, but is only the “sequence” part of
the index. For a full reference index, you still need to pair it with an appropriate unitig ->
reference mapping (more to come).

